

Locoregional Strategies for Downstaging HCC to Transplantation

Pierce K.H Chow FRCSE PhD Senior Consultant Surgeon, National Cancer Center and Singapore General Hospital Professor and Program Director, Duke-NUS Medical School Singapore

The Liver Transplant Symposium 2023 23rd September 2023, NUHS

Disclosures

Personal financial interests:

<u>Advisory role</u>: Sirtex Medical, Ipsen, BMS, Oncosil, Bayer, New B Innovation, MSD, BTG Plc, Guerbet, Roche, AUM Bioscience, L.E.K. Consulting, AstraZeneca, Eisai, Genentech, IQVIA, Abbott

<u>Research funding</u>: Sirtex Medical, Ipsen, IQVIA, New B Innovation, AMiLi, Perspectum, MiRXES, Roche

Leadership roles:

Founding President, College of Clinician Scientists, Academy of Medicine Singapore Protocol Chair, The Asia-Pacific Hepatocellular Carcinoma (AHCC) Trials Group Academic Vice-Chair (Research), Surgery Academic Clinical Program, Singhealth-Duke-NUS Chief Medical Officer, AVATAMED PTE LTD

As in Resection:

What is Rationale behind Downstaging of HCC to Transplantation

Convert HCC with high tumor burden beyond transplant criteria to HCC with lower tumor burden within transplant criteria – selecting for good biology

2. To improve tumor biology prior to liver transplantation and thus improve survival – beyond selecting for good biology

Is successful down-staging a surrogate for good Biology

Kaplan-Meier recurrence-free survival curves with 1-, 3-, and 5-year estimates comparing (A) recipients within MC, outside MC and downstaged to MC, and outside MC not downstaged to MC

- **71** patients originally beyond MC and successfully **down-staged** to MC had **equivalent recurrence-free survival** at 1, 3, and 5-years compared with **717** patients originally within MC
- Showed significantly superior survival compared with 69 patients beyond MC who were not down-staged
- Higher incidence of microvascular invasion in recipients beyond MC who could not be down-staged, compared with recipients down-staged to MC (49% vs 22%, p = 0.012)

Currently 2 ways to Downstage HCC using loco-regional therapy

- Trans-arterial chemo-embolisation (TACE):
 - widely used
 - used mainly in *HCC*, *NETs* (includes DC Beads)
- Selective Internal Radiation Therapy (SIRT):
 - also known as Radio-embolization (TARE)
 - higher disease control
 - Suitable for portal vein invasion
 - SIR-Sphere[®], Thera-Sphere[®]

SIR-Spheres[®] TheraSphere[®]

Efficacy of SIRT Y90 versus TACE in down-staging HCC

Home > Radiology > Vol. 303, No. 3

< PREVIOUS

NEXT >

Original Research Vascular and Interventional Radiology Free Access

⁹⁰Y Radioembolization versus Drug-eluting Bead Chemoembolization for Unresectable Hepatocellular Carcinoma: Results from the TRACE Phase II Randomized Controlled Trial

Elisabeth Dhondt E, Bieke Lambert¹, Laurens Hermie, Lynn Huyck, Peter Vanlangenhove, Anja Geerts, Xavier Verhelst, Maridi Aerts², Aude Vanlander, Frederik Berrevoet, Roberto Ivan Troisi³, Hans Van Vlierberghe, Luc Defreyne

Author Affiliations

Published Online: Mar 8 2022 https://doi.org/10.1148/radiol.211806

Null Hypothesis: There would be no difference in time to progression between Y90 and TACE

- •Background: BCLC only recommends TACE for intermediate or unresectable HCC without metastasis but retrospective studies have shown that selective internal radiation therapy (SIRT) with yttrium-90 microspheres aka transarterial radioembolization (RE) can offer superior outcomes.
- •**DEB-TACE** was chosen as comparator as it offered consistent methodology compared to conventional TACE, and but equal clinical outcomes and less AE than conventional TACE
- •Therasphere was choses are the Y90 carrier, aiming for an absorbed dose of 120 Gy
- •Design: open-label, single center, superiority, randomized controlled trial (NCT01381211)
- •Primary outcome: Time to overall tumor progression (TTP) according to mRECIST

•Secondary endpoints:

- Overall survival (OS)
- Progression free survival (PFS)

Statistical Analysis

- •Assumed effect size: 20% improvement in TTP with Y90
- Type I error: 5% (two-sided) statistical power: 90%
- Sample size required: 136 patients randomized in a 1:1 ratio

Interim analysis: at 45 events (progression)

• Null hypothesis will be rejected when HR > 2.60 or < 0.39 or when p < 0.0024

•Final analysis:

- Null hypothesis will be rejected when HR > 1.49 or < 0.67 or when p < 0.049
- •TTP to be estimated with Kaplan-Meier method and compared using log-rank test
- •HR to be compared using Cox-proportional hazard model

Participants

INCLUSION CRITERIA

- •HCC diagnosed using **EASL guidelines**
- •BCLA A or B not amendable to resection, transplantation or ablation

•ECOG 0 -1

•Child-Pugh score up to 7

EXCLUSION CRITERIA

- •> 50% of liver involved with HCC
- •Extra-hepatic disease
- •Invasion of main, right or left portal vein
- Serum bilirubin > 34 micromol/L (or over 44 micromole/L if only single segment involved.

Child-Pugh score > 7

Trial flow diagram. cTACE = conventional transarterial chemoembolization, DEB = drug-eluting bead, HCC = hepatocellular carcinoma, RFA = radiofrequency ablation, TACE = transarterial chemoembolization, TARE = transarterial radioembolization, TcMAA = technetium 99m macroaggregated albumin.

Median FU **TARE**: 28 months Median FU **TACE**: 15.6 months

> Dhondt E. Published Online: March 08, 2022 https://doi.org/10.1148/radiol.211806

ITT Court BB Court						
	ITT Gaup			PP Geosp		
Characteristic	TARE (<i>x</i> = 38)	DEB-TACE (n = 34)	/ Value	TARE (n = 32)	DEB-TACE (n = 34)	P.Valu
Age (y)*	67 (63-72) [51, 85]	68 (61-71) [38, 84]	.81	68 (64-74) [54, 85]	68 (61-71) [38, 84]	,53
Sex		A CARLON AND	>.99			>.99
M	33 (87)	30 (88)		28 (88)	30 (88)	
1	5 (13)	4 (12)		4 (12)	4 (12)	
Race			.60			>.99
White	.37	32		51	32	
Black	1	2		1	2	
Cause of HCC			.56			.79
Alcohol use disorder	27 (71)	24 (70)		21 (66)	24 (70)	
Nosalcoholic steatohepatitis	1 (2.6)	2 (5.9)		1 (3.1)	2 (5.9)	
Henochromatosis	1 (2.6)	2 (5.9)		1 (3.1)	2 (5.9)	
Viral	5 (13)	5 (15)		5 (16)	5 (15)	
Unknown	-4 (10)	1 (2.9)		4 (12)	1 (2.9)	
Child-Pugh score		1000		1001110	2.000	
A	36 (95)	29 (85)		30 (94)	29 (85)	
Ð	2 (5.3)	5 (15)		2 05.30	5 (15)	
ECOG performance status			.73			>.99
0	34 (90)	29 (85)		28 (880)	29 (85)	
P.	4(11)	305		40.9	5 (15)	
or-feromentein (meldl.)			.73			.71
<400	33 (87)	28 (82)	-	28 (88)	28 (82)	10000
2:400	4 (10)	\$ (15)		5 (2.4)	\$05	
Des mining	1/240	1/2.9		10.0	1-(2.9)	
Total hilimbia (anal/L)*	11.1 (8.6. 20.5)	13.7 (10.3.38.1)	- 44	11.1 (8.6. 20.5)	157 (30.3-38.1)	1.46
tool ottenon denor ro	18.4. 27.41	[1.9, 27,4]	1.46	13.4.27.41	11.9. 27.41	1.40
RCI C normal starting	the street of	(service of)	40	[restarres]	(accessed)	
A	- 7(18)	4.025		500	4.020	11.2
8	31 (82)	30 (885		27 (84)	50 (88)	
Poles marting	3.(7.4)	\$0.9	50	216.45	5.050	. 26
Poter ablation	1/2.6	1.(2.9)	- 10	0.000	1/2.0	
Tamor burden	· 1+	4 (40.7)	> 09	a (a)	* America	.81
Daibhar	19/500	16 (47)		18 (47)	16 (47)	
Rd day	19 (50)	10 (47)		13.000	101001	
Turner land	1999 B. M.		- 10	20.000	10000	14
<1 modulos	18 (47)	21.0545	-10	15 (47)	23.0680	14.9
- J modular	30 (53)	11 (43)		12 (54)	11 (50)	
- 3 lineare	AV 13.00	33 ((34)	- 0.6	17.55W.	11.1247	
Sellinger	0.000	4/125		2,1375	4.00	
Madeford	0 (21) NO (210	30 (12)		16 (78)	50 (50)	
2. 1 feet	30 (7 9)	10		2010/01	10	
4.10.5.	17	10		14	10	
4-10 1041		10		14	10	
annual format allow from 1			22	1		1.64
Madian with 1/30	4101.80	170767	41.	630336	47/27.675	
asonn was tor	42(34-34)	47 (34-0.7)		4.4 (3.2-3.4)	47 (3.790.7)	
CONTRACT TO ALL DISTURDED AND ALL	Also (2010) 2029	NOT CROSS MORE		- 303 Yeste 1943	100 EX.01 1000	

- Majority were multifocal
 - 79% vs 88%
- Median diameter of larger tumour
 - 4.3 cm vs 4.7 cm

Table 2: Treatment Data in the Safety Group			
Treatment Parameter of Interest	TARE (n = 33)*	DEB-TACE (n = 36) [†]	P Value
Time from randomization to first treatment (d) ⁴	24 (20-29) [7, 118]	7.5 (4.0-15) [1, 69]	$<.001^{9}$
Treatment sessions per participant			<.0011
1	16	2	
2	17	11	
3	0	12	
4	0	9	
5	0	2	
Median	2	3	
No. of participants with a lesion treated more than once			
Target lesion 1	NA	19/36 (53)	
Target lesion 2	NA	11/32 (34)	
Nontarget lesions	NA	14/28 (50)	
Time interval between treatment sessions (d) ¹	46 (41-54) [32, 84]	39 (29-49) [6, 87]	.035
Total treatment period (d) ³	32 (0-46) [0, 84]	82 (56-122) [0, 266]	<.0015
Approach			>.99
Unilobar	16	17	
Bilobar	17	19	
Treatment approach			<.0014
Selective	7	29	
Lobar	10	3	
Near whole liver	7	4	
Whole liver	9	0	

Note.—Unless otherwise specified, data are numbers of participants, and data in parentheses are percentages. DEB = drug-cluting bead, NA = not applicable, TACE = transarterial chemoembolization. TARE = transarterial radioembolization.

* Thirty-two participants as per protocol plus one participant originally randomized to the TARE arm but who received TARE out of trial (main portal vein thrombosis).

¹ Thirty-four participants as per protocol plus two participants originally randomized to the TARE arm but who received DEB-TACE out of trial (incompatible technetium 99m–labeled macroaggregated albumin scintigraphy).

¹ Data are medians, with IQRs in parentheses and minimum and maximum values in brackets.

³ P values were calculated by using the Mann-Whitney U test.

* P values were calculated by using the Fisher exact test.

в

Interim analysis: at 45 events (progression) – primary outcome

Efficacy outcomes in participants in the Transarterial Radioembolization versus Chemoembolization for the Treatment of Hepatocellular Carcinoma (i.e TRACE) trial randomized to transarterial radioembolization (**TARE**) or drug-eluting bead (DEB) transarterial chemoembolization (**TACE**). Kaplan-Meier plots show **time to overall tumor progression** in:

(A) the intention-to-treat group 17.1 vs 9.5 months p = 0.002 HR= 0.35 (0.15 − 0.70)
(B) the per-protocol group 17.1 vs 9.5 months p < 0.001 HR = 0.29 (0.14 − 0.60)

P values were calculated by using the log-rank test. Dashed lines indicate 95% CIs. HR = hazard ratio.

Dhondt E. Published Online: March 08, 2022 https://doi.org/10.1148/radiol.211806

Statistical Analysis

- •Assumed effect size: 20% improvement in TTP with TARE
- Type I error: 5% (two-sided) statistical power: 90%
- Sample size required: 136 patients randomized in a 1:1 ratio

•Interim analysis: at 45 events (progression)

- Null hypothesis will be rejected when HR > 2.60 or < 0.39 or when p < 0.0024
- •Final analysis:
 - Null hypothesis will be rejected when HR >1.49 or < 0.67 or when p < 0.049
- •TTP to be estimated with Kaplan-Meier method and compared using log-rank test
- •HR to be compared using Cox-proportional hazard model

Interim analysis: at 45 events (progression) – secondary outcome

Survival outcomes in participants in the Transarterial Radioembolization versus Chemoembolization for the Treatment of Hepatocellular Carcinoma (i.e TRACE) trial randomized to transarterial radioembolization (**TARE**) or drug-eluting bead (DEB) transarterial chemoembolization (**TACE**). Kaplan-Meier plots show overall survival in:

(A) the intention-to-treat group 30.2 vs 15.6 months p=0.006 HR=0.48 (0.28 - 0.82)
(B) the per-protocol group. 30.2 vs 15.6 months p=0.008 HR 0.47 (0.26 - 0.83)

P values were calculated by using the log-rank test. Dashed lines indicate 95% CIs. HR = hazard ratio.

> Dhondt E. Published Online: March 08, 2022 https://doi.org/10.1148/radiol.211806

No. and Type of SAEs	TARE $(n = 53)$	DEB-TACE $(n = 36)$	P Value*	
No. of participants with at least one SAE [†]	13 (39)	19 (53)	.47	
Total no. of SAEs	20	34		
No. of grade 3 toxicities	19	29		
Blood and lymphatic system disorders	0	1		
Musculoskeletal and connective tissue disorders	0	2		
Nervous system disorders	0	1		
Cardiac disorders	0	2		
Renal and urinary disorders	5	5		
Hepatobiliary disorders	14	12		
Respiratory, thoracic, and mediastinal disorders	0	6		
No. of participants with grade 5 toxicities	1 (3.0)	5 (14)	.21	
Thirty-day mortality	0(0)	3 (8.3)	.24	

Note.—Data in parentheses are percentages. DEB = drug-eluting bead, SAE = serious adverse event, TACE = transarterial chemoembolization. TARE = transarterial radioembolization.

* P values were calculated by using the Fisher exact test.

¹Adverse event grade 3–5 according to the Common Terminology Criteria for Adverse Events version 4.03.

Table 4: Grade 5 Serious Adverse Events							
Participant No.	Treatment Arm	Treatment Session Closest to Event	Days Since Last Treatment	Days Since First Treatment	CTCAE Category	Detailed Information	Relation with Treatment
1	TARE	Second	87	122	Hepatobiliary	Radiation-induced liver disease	Definite
2	DEB-TACE	Third	86	142	Unknown cause	Sudden death while listed for transplant	Unlikely
3	DEB-TACE	Second	6	59	Infections and infestations	Septic shock	Definite
4	DEB-TACE	Second	78	112	Infections and infestations	Liver abscess with septic shock	Definite
5	DEB-TACE	Third	16	180	Infections and infestations	Metabolic lactate acidosis and acute kidney injury	Definite
6	DEB-TACE	First	24	24	Cardiac	Non-ST segment elevation myocardial infarction	Unlikely

Note.—CTCAE = Common Terminology Criteria for Adverse Events version 4.03, DEB = drug-eluting bead, TACE = transarterial chemoembolization, TARE = transarterial radioembolization.

KSNA°

⁹⁰Y Radioembolization versus Drug-eluting Bead Chemoembolization for Unresectable Hepatocellular Carcinoma: Results from the TRACE Phase II Randomized Controlled Trial

Left: SPECT image after technetium 99m-labeled macroaggregated albumin administration confirms tracer uptake by hepatocellular carcinomas (HCCs). Right: No HCCs could be identified on T1weighted VIBE at 15 months.

Dhondt E et al. Published Online: March 8, 2022 https://doi.org/10.1148/radiol.211806

- This prospective phase II randomized controlled trial (TRACE) showed the median time to progression was 17.1 months in the yttrium 90 radioembolization (TARE) arm (n = 38) versus 9.5 months in the drug-eluting bead (DEB) transarterial chemoembolization (TACE) arm (n = 34) (hazard ratio [HR], 0.36; P = .002), justifying early termination of the study.
- Median overall survival was <u>30.2 months</u> after TARE versus <u>15.6 months</u> after DEB-TACE (HR, 0.48; P = .006).

Radiology

Radiology

Real World data in Efficacy of SIRT Y90 versus TACE in down-staging HCC to transplant criteria

 Multicenter Study
 > Gastroenterology. 2021 Nov;161(5):1502-1512.

 doi: 10.1053/j.gastro.2021.07.033. Epub 2021 Jul 28.

Downstaging Outcomes for Hepatocellular Carcinoma: Results From the Multicenter Evaluation of Reduction in Tumor Size before Liver Transplantation (MERITS-LT) Consortium

```
Neil Mehta <sup>1</sup>, Catherine Frenette <sup>2</sup>, Parissa Tabrizian <sup>3</sup>, Maarouf Hoteit <sup>4</sup>, Jennifer Guy <sup>5</sup>,
Neehar Parikh <sup>6</sup>, T Tara Ghaziani <sup>7</sup>, Renu Dhanasekaran <sup>7</sup>, Jennifer L Dodge <sup>8</sup>,
Brahma Natarajan <sup>9</sup>, Matthew L Holzner <sup>3</sup>, Leana Frankul <sup>2</sup>, Wesley Chan <sup>9</sup>, Austin Fobar <sup>6</sup>,
Sander Florman <sup>3</sup>, Francis Y Yao <sup>10</sup>
```

```
Affiliations + expand
PMID: 34331914 PMCID: PMC8545832 DOI: 10.1053/j.gastro.2021.07.033
Free PMC article
```

Abstract

Background & aims: United Network of Organ Sharing (UNOS) has adopted uniform criteria for downstaging (UNOS-DS) of hepatocellular carcinoma (HCC) before liver transplantation (LT), but the downstaging success rate and intention-to-treat outcomes across broad geographic regions are unknown.

Table 1.

United Network for Organ Sharing (UNOS) Down-staging Protocol

Inclusion Criteria		
HCC enceeding Milan criteria but meeting one of the following: 1. Single leaton 5.1–8 cm 2. 2–3 leatons each c 3 cm with the num of the maximal tumor diameters c 8 cm 3. 4–5 leatons each c 3 cm with the num of the maximal tumor diameters c 8 cm Plus absence of vascular invasion or extra-hepatic disease based on cross-sectional imaging		
Criteria for Successful Down-staging		
Residual tumor size and diameter within Milan criteria (I lesion 45 cm, 2-3 lesions 43 cm) a) Only viable tumor(s) are considered, tumor diameter measurements should not include the area of secrosis from tumor directed therap b) If there is more than one area of residual tumor enhancement, then the diameter of the entire lesion should be coursed towards the over tumor burden		
Criteria for Down-staging Failure and Exclusion from Liver Transplant		
 Progression of tumor(i) to beyond inclusion/eligibility citteria for down-staging (as defined above) Tumor invasion of a major bepatic vessel based on cross-sectional imaging Lymph node involvement by tumor or extra-hepatic spread of tumor Inflituative tumor growth pattern Per current UNOS policy, if AFP a 1000 ng/mL then transplant cannot be undertaken unless AFP level decreases to < 500 ng/mL with local-regional therapy 		
Timing of Liver Transplant in Relation to Down-staging		
1. These should be a minimum observation period of 3 months of disease stability from successful down-starsme to 1.T		

 Per current UNOS policy, patient must remain within Milan criteria for 6 months after successful down-staging before receiving MELD exception points

- The Milan criteria remained the gold standard for liver transplant candidate selection in the US
- In 2017 UNOS/OPTN standardized criteria for downstaging
- This offered the opportunity for large multi-center downstaging studies
- This is the first prospective multicenter downstaging study from the MERITS-LT consortium of 7 centers from 4 UNoS regions

Table 3

۲

Baseline and Tumor Treatment Characteristics of the Down-staging Group

Study Variable	Overall (n=209)
Median Age (BQR)	63 (54-67)
Male (%)	178 (85.2)
Race Ethnicity (%) Cancasian Hispanic Azian Admian American	123 (80.0) 45 (22.0) 23 (11.2) 20 (4.9)
Liver Disease Etislogy (%) Hepatins C Alcohol NAFLD Hepatins B Other	125 (39.0) 33 (15.0) 23 (11.0) 16 (7.7) 12 (5.7)
Median CTP Score (AQR) ⁴ Child's A (CTP 5–6, %) Child's B (CTP 7–9, %) Child's C (CTP 20–15, %)	\$ (5-6) 151 (75.5) 43 (21.5) 6 (3.0)
Median MELD (IQR)	9 (7-11)
Median AFP ng nL (DQR) >100 (%) ≥1000 (%)	13 (5-74) 48 (23.0) 24 (11.5)
Median AFP-L3% (RQR) **	10.3 (4.6-16.9)
Median DCP (IQR) **	2.5 (0.5-19.9)
Median NLR (IQR)	25(17-34)
Median PLR (IQR)	86.3 (66.0-117.4)
Number of BCC Lesions 1 lision 2-3 lision 4-3 lision	67 (32.1) 113 (34.1) 29 (13.9)
Initial Total Tamor Diameter (cm) (IQR)	62(56-73)
Number LRT Received (%) 1 2 3 4 25	44 (21.1) 53 (25.4) 41 (19.6) 25 (12.0) 46 (22.0)
Type of LRT Received (%) Received 1+ TACE Received 1+ Y-90 Received 1+ Ablation	169 (80 5) 84 (40.2) 59 (28.2)
Type of 1 st LRT Received (%) TACE	132 (63.1) 62 (29.7)
Y-90 Other	15 (7.25

- 7 high-volume LT centers in 4 UNOS regions with HCC meeting UNOS-DS eligibility criteria were enrolled from 2016–2019 and prospectively followed.
- The specific type of LRT used was at the discretion of each of the center's multidisciplinary tumor boards – TACE= 132 Y90 = 62
 - Primary outcome was probability of and factors associated with successful down-staging and protocol dropout due to tumor progression or liverrelated death.
- Secondary outcomes included probability of LT, post-LT survival, and HCC recurrence.
- This is not an RCT.
- There is no defined sample-size

Clinical Characteristics an	Outcomes by	Type of 1	st Down-staging	Treatme
-----------------------------	-------------	-----------	----------------------------	---------

Variable	TACE (n=132)	Y-90 (m=62)	p-value
Median Age (JQR)	63 (58-67)	63 (60-66)	0.65
Male (%)	122 (92.4)	45 (72.6)	<0.001
CTP Class (%) * Child's A Child's B Child's C	91 (72.2) 29 (23.0) 6 (4.8)	50 (80.6) 12 (19.4) 0	0.16
Median MELD (JQR)	9 (7-12)	8.5 (7-10)	0.04
Median AFP ng mL (DQR)	11.7 (4.9-58.0)	17.9 (5.7-238.4)	0.11
Number of HCC Lesions 1 listion 2-3 listions 4-5 listions	32 (24.2) 80 (60.6) 20 (15.2)	30 (48.4) 25 (40.3) 7 (11.3)	0.003
Initial Total Tunner Diameter (cm) (IQR)	63 (5.6-7.3)	63(58-73)	0.67
# Lesings Treated with 1# LRT (JQR)	1 (1-2)	1 (1-2)	0.07
mRECEST Response to 1" LRT Complete Response Partial Response Stable Disease Progressive Disease	37 (28.0) 69 (32.3) 14 (10.6) 12 (9.1)	17 (27.4) 30 (48.4) 7 (11.3) 8 (12.9)	0.67
Median /LRT Received (3QR)	3 (2-5)	2 (1-3)	0.006
Ever Down-Staged (%) Time to Down-Staged (mo) (IQR)	113 (85.6) 29 (1.3-5.6)	50 (30.6) 2.4 (1.7-4.6)	0.38 0.73
Down-Staging Protocol Dropout (%) Time to Dropout (200) (IQR)	48 (36.4) 8.4 (5.8–13.0)	20 (32 3) 10 2 (6.6-14 7)	0.58 0.33
LT (%) Time to LT (mc) (IQR) AFP prior to LT (IQR)	44 (33.3) 18.3 (10.8-25.2) 43 (3.6-21.7)	14 (22.6) 15.9 (11.2-19.2) 9.2 (6.0-16.0)	0.15 0.19 0.18
Explant Pathology (%) Completely Necrotic Tumor(s) Beyond Milan Explant Microwascular Invasion	9 (20.5) 19 (43.2) 9 (20.5)	4 (30.8) 3 (23.1) 1 (7.7)	0.76 0.44 0.29

3-155

Intention-to-Treat Outcomes

Figure 1.

Summary of the intention-to-treat outcome of the 209 patients enrolled in the prospective down-staging protocol

Intention-to-treat Outcomes

Kaplan-Meier probability of successful down-staging by type of first local-regional therapy (TACE versus Y-90) Kaplan-Meier probability of protocol dropout from date of first down-staging treatment

Conclusion: between TACE and Y90

- No difference in protocol dropout
- No difference in downstaging
- No difference in recurrence after transplant

Figure 4.

Kaplan-Meier probability of intention-to-treat survival from first down-staging treatment stratified by initial total tumor burden

Conclusions

- RCT shows Y90 superior to TACE in terms of
 - Recurrence-free survival
 - Overall survival

- : **17.1 vs 9.5 months** p = 0.002 **HR= 0.35** (0.15 0.70)
- : **30.2 vs 15.6 months** p=0.006 HR=0.48 (0.28 0.82)
- The MERITS-LT study (not an RCT) shows that between TACE and Y90
 - No difference in protocol dropout
 - No difference in downstaging
 - No difference in recurrence after transplant
- Efficacy of downstaging is not necessarily the same as efficacy in downstaging to transplantation

Thank You!