

SELECT ONE:
Restricted, Sensitive (High)
Restricted, Sensitive (Normal)
Restricted, Non-Sensitive
Unclassified, Non-Sensitive

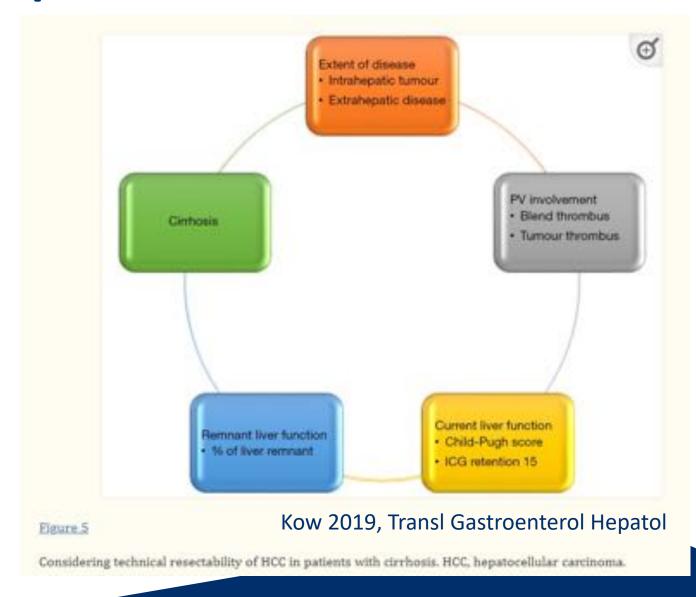
Predicting need for transplantation in resectable candidates in HCC

Pang Ning Qi

Conflicts of Interest

Nil

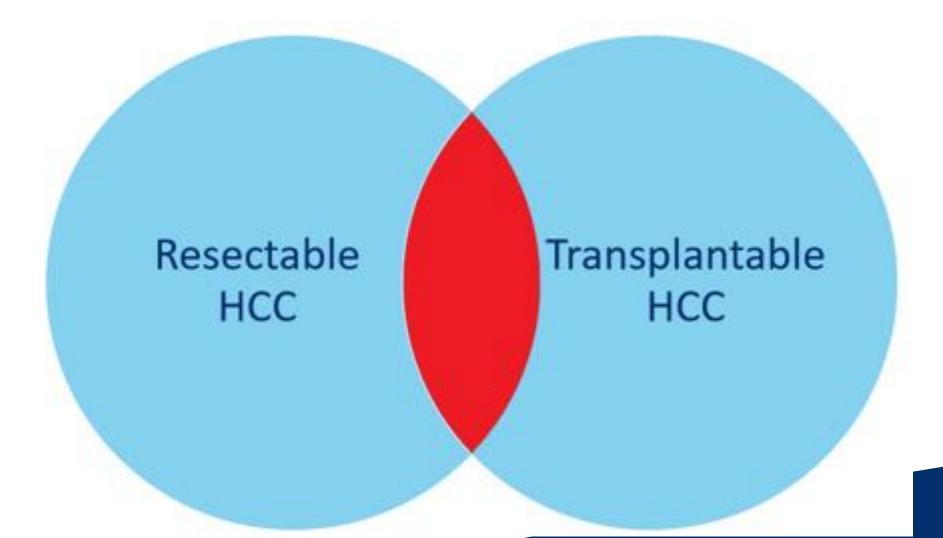
Defining the Patient Population


Resectable HCC

NOT

Outcomes of LT vs LR in HCC patients

Rather, we want to understand in patients with resectable HCC

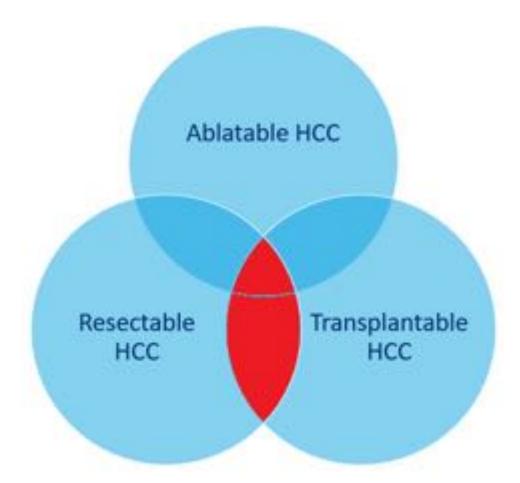

- Do they benefit from LT upfront (instead of resection)
- Do they benefit from LT after resection
 - Pre-emptive (de principe)
 - Salvage

Resectable and Transplantable

Ultimate goal: improved OS

Predicting need benefit for transplantation in resectable candidates in HCC

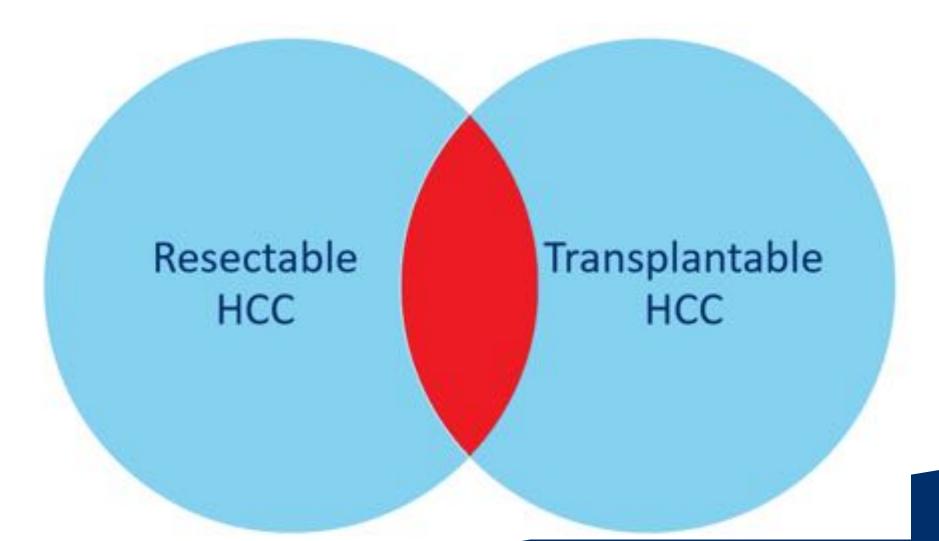
[Input data classification] HCC Advanced stage (C) Very early stage (5) Early stage (A) Interrediate stage (B) Terminal stage (D) Based on turnor burden. Iver Sunction and Portal invesion and/or extrahepatic spread · Single s2-on: · Single, or si3 nodules each si3 cm Multinodular Any tumor bunden physical status Preserved Ever function**, PS 0 * Preserved liver function*, PS 0 Preserved liver function*, PS 0. Preserved liver function, PS 1-2. End stage Iver function, PS 3-4 Refined by AFP, ALBI score. Child Pugh, MELD Diffuse, infiltrative, Potential sandidate Single \$T nodules. Extended That defined for tiver each 15 cm liver transplant. Produles, preserved. extensive. transplantistion: portal flow. briober liver others (size, AFP) surjective access. involvement. Portel pressure, binan To decide individualized breatment approach. Contraindications. Mornal Increased Systemic treatment BSC 1" Treatment option Ablation Resection Ablation TACE Transplant Expected survival >2 years 3 months e5 years >2.5 years Successful Not feasible or faiure Ateastizumab Bevacizumab/Durvalumab Tremelimumab downstaging If not feasitie Serafenib or Lenkstinib or Durvalumab Treatment stage migration primes kneer priority 2"Line Riegorafenibi aptions due to non-liver Per Post contraint. Cabosantinto related oknical profile. TACE fonsible Remotivenship Radioentolization (any for ongo toron of on) JAPP HITE NOWS Saltyre Clinical - Post atezolizumat-bevacizumati (Age, comorbidities, patient Post durvalumab-tremelerumah trivia values and availability) * - Post lervatinib or Durvaturesb Khierostve seculations they 3º Line "Except for those with burner burster acceptable for havegiven." Del colonidental Bull Bay Treve Act "Resection may be considered for single peripheral HDC with: Cabopantinib


adequate remnant liver voture

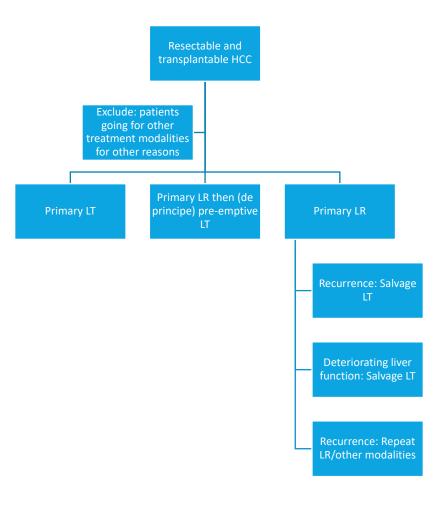
feeen jerrywel.

Other Variables - 1

Back of our mind – other treatment modalities

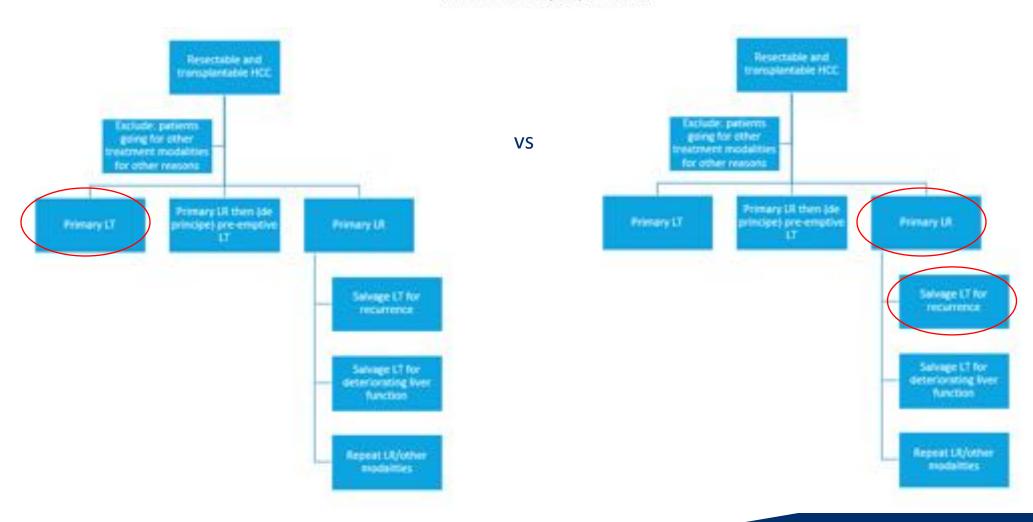

- Ablation
- Trans arterial therapy
- Systemic

Resectable and Transplantable


Ultimate goal: improved OS

Predicting need benefit for transplantation in resectable candidates in HCC

Resectable and Transplantable


How to choose?

Liver Resection as a Bridge to Transplantation for Hepatocellular Carcinoma on Cirrhosis

A Reasonable Strategy?

René Adam, MD, PhD, Daniel Azoulay, MD, PhD, Denis Castaing, MD, Rony Eshkenazy, MD, Gérard Pascal, MD, Kentaro Hashizume, MD, Didier Samuel, MD, PhD, and Henri Bismuth, MD, FACS Hon.

Liver Resection as a Bridge to Transplantation for Hepatocellular Carcinoma on Cirrhosis

A Reasonable Strategy?

René Adam, MD, PhD, Daniel Azoulay, MD, PhD, Denis Castaing, MD, Rony Eshkenazy, MD, Gérard Pascal, MD, Kentaro Hashizume, MD, Didier Samuel, MD, PhD, and Henri Bismuth, MD, FACS Hon.

Salvage LT (n = 17) vs primary LT (n = 195)

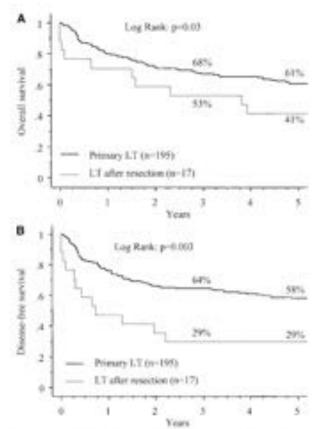


FIGURE 2. Comparison of survival between primary and secordary transplantation for HCC on cirrhosis. (A) overall survival; (B) disease-free survival.

Adam et al 2003, Ann Surg

Primary LR \pm salvage (n = 98) LT vs primary LT (n = 195)

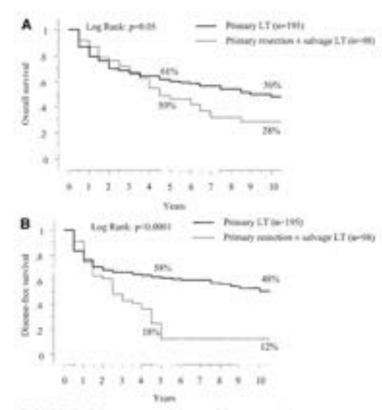
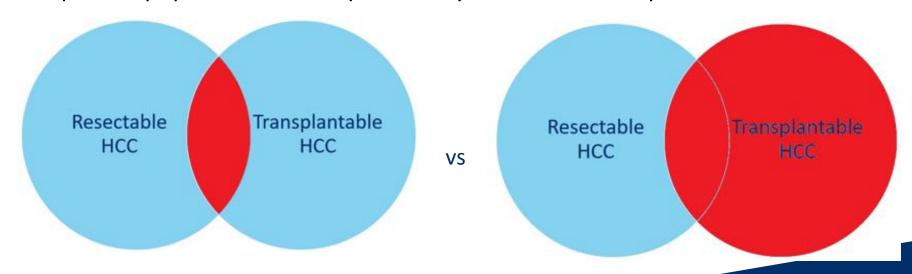
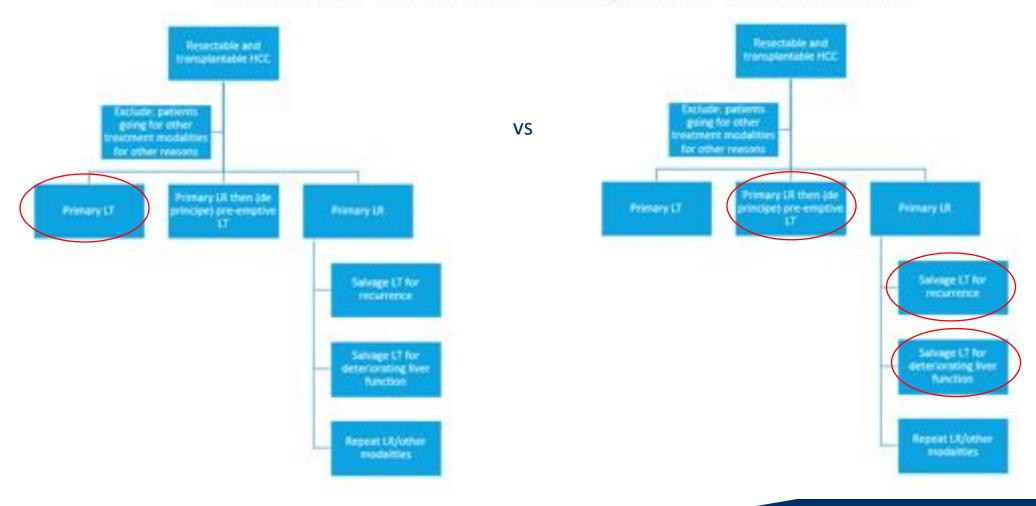



FIGURE 4. Comparison of survival between primary resection with possible transplantation and primary transplantation for HCC on cirrhosis (A) overall survival and (B) disease-free survival.

Liver Resection as a Bridge to Transplantation for Hepatocellular Carcinoma on Cirrhosis A Reasonable Strategy?


René Adam, MD, PhD, Daniel Azoulay, MD, PhD, Denis Castaing, MD, Rony Eshkenazy, MD, Gérard Pascal, MD, Kentaro Hashizume, MD, Didier Samuel, MD, PhD, and Henri Bismuth, MD, FACS Hon.

- LT after LR is associated with
 - Higher mortality
 - Increased risk of recurrence
 - LR impairs patient transplantability
- Note: patient population for LT upfront may not have been upfront resectable

Resection Prior to Liver Transplantation for Hepatocellular Carcinoma

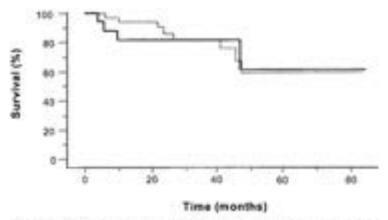
Jacques Belghiti, MD,* Alexandre Cortes, MD,* Eddie K. Abdalla, MD,* Jean-Marc Régimbeau, MD,* Kurumboor Prakash, MD,* François Durand, MD,† Daniele Sommacale, MD,* Federica Dondero, MD,* Mickael Lesurtel, MD,* Alain Sauvanet, MD,* Olivier Farges, MD, PhD,* and Reza Kianmanesh, MD*

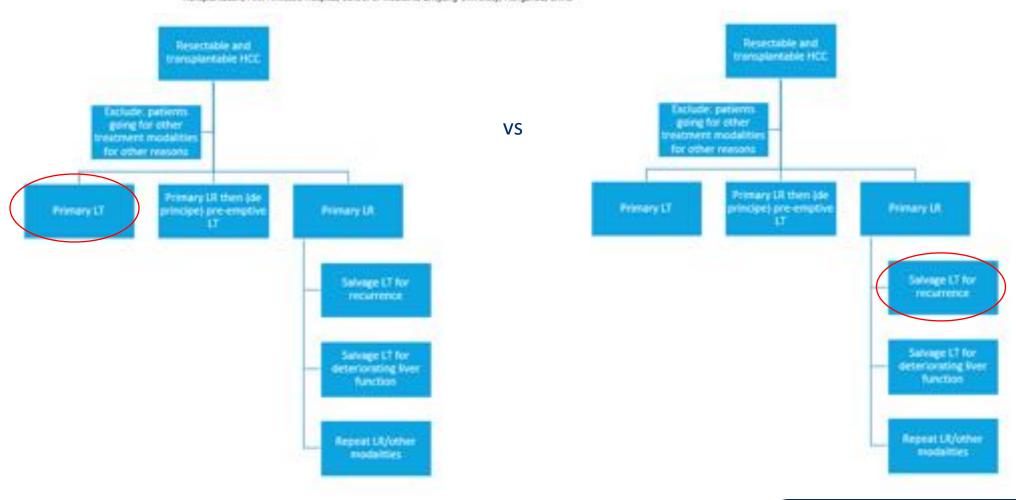
- Primary LT (n = 70) vs secondary LT (n = 18)
 - Secondary LT for recurrence, deterioration of liver function, pre-emptive
- LT after LR does NOT impair long term survival
- Note: patient population for LT upfront may not have been upfront resectable

Resectable HCC Transplantable HCC Resectable HCC Transplantable HCC Transplantable HCC

Resection Prior to Liver Transplantation for Hepatocellular Carcinoma

Jacques Belghiti, MD,* Alexandre Cortes, MD,* Eddie K. Abdalla, MD,* Jean-Marc Régimbeau, MD,* Kurumboor Prakash, MD,* François Durand, MD,† Daniele Sommacale, MD,* Federica Dondero, MD,* Mickael Lesurtel, MD,* Alain Sauvanet, MD,* Olivier Farges, MD, PhD,* and Reza Kianmanesh, MD*



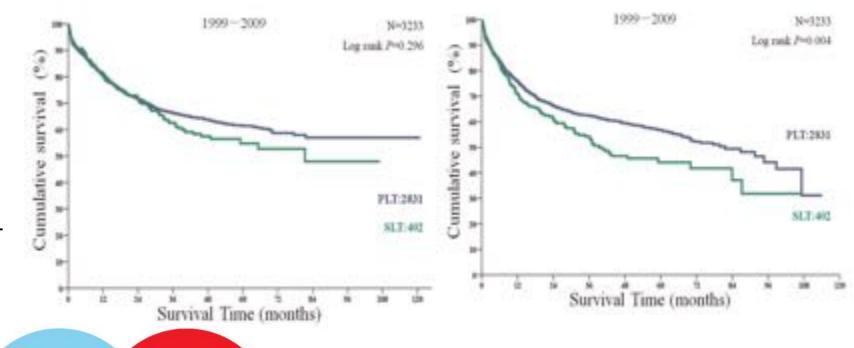

FIGURE 2. Kaplan-Meier survival plots for PLT versus SLT groups. The survival rates measured from the time of liver transplantation in the group of patients who underwent primary (—) versus secondary (—) liver transplantation for HCC. There was a single death (5.6%) in the first 30 days postoperatively in the SLT group and 4 postoperative deaths (5.7%) in the PLT group. Patients who died in the postoperative period were excluded.

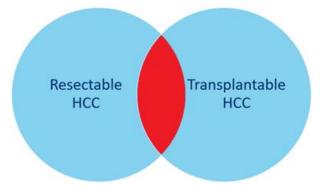
Belghiti et al 2003, Ann Surg

Salvage Liver Transplantation Is a Reasonable Option for Selected Patients Who Have Recurrent Hepatocellular Carcinoma after Liver Resection

Zhenhua Hu^{1,2,3}, Jie Zhou^{1,2,3}, Xiaofeng Xu^{1,2,3}, Zhiwei Li^{1,2,3}, Lin Zhou^{1,2,3}, Jian Wu^{1,2,3}, Min Zhang^{1,2,3}, Shusen Zheng^{1,2,3}

1 Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 2 Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 3 Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China




Salvage Liver Transplantation Is a Reasonable Option for Selected Patients Who Have Recurrent Hepatocellular Carcinoma after Liver Resection

Zhenhua Hu^{1,2,3}, Jie Zhou^{1,2,3}, Xiaofeng Xu^{1,2,3}, Zhiwei Li^{1,2,3}, Lin Zhou^{1,2,3}, Jian Wu^{1,2,3}, Min Zhang^{1,2,3}, Shusen Zheng^{1,2,3}

1 Department of Hegatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 2 Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 3 Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

- Primary LT (n = 6087) vs secondary LT (n = 888) for recurrence
- Hangzhou criteria
- OS similar
- DFS improved in primary LT

Transplantable

Hu et al 2012, PLoS ONE

DFS

Liver transplant offers a survival benefit over margin negative resection in patients with small unifocal hepatocellular carcinoma and preserved liver function

Andrew J. Benjamin ^a, Talia B. Baker ^a, Mark S. Talamonti ^b, Adam S. Bodzin ^a, Andrew B. Schneider ^a, David J. Winschester ^b, Kevin K. Roggin ^a, David J. Bentrem ^c, Nicholas R. Suss ^b, and Marshall S. Baker ^{b,*}

- US registry data
- MELD<12 and tumour <3cm included
- Liver resection (n-219) vs transplant (n=241)

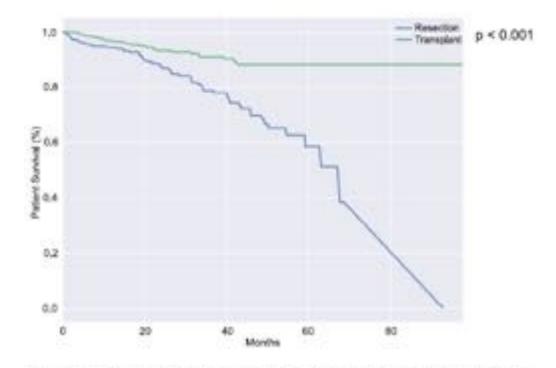
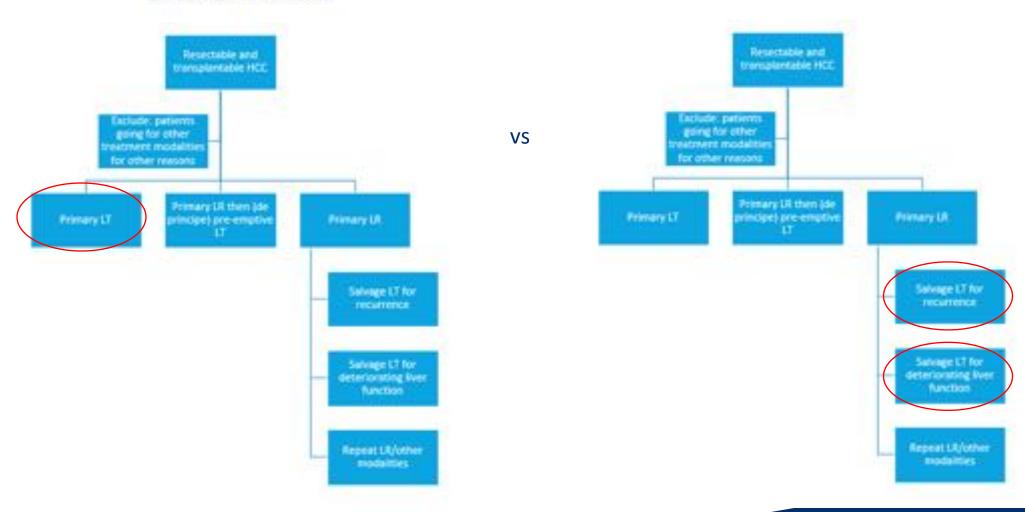



Fig. 3. Kaplan-Meier survival estimates comparing liver resection and orthotopic liver transplant.

Salvage versus Primary Liver Transplantation for Hepatocellular Carcinoma: A Twenty-Year Experience Meta-Analysis

Gian Piero Guerrini *0, Giuseppe Esposito, Tiziana Olivieri, Paolo Magistri, Roberto Ballarin, Stefano Di Sandro and Fabrizio Di Benedetto

Review

Meta-analysis 1

Salvage versus Primary Liver Transplantation for Hepatocellular Carcinoma: A Twenty-Year Experience Meta-Analysis

Gian Piero Guerrini *** Giuseppe Esposito, Tiziana Olivieri, Paolo Magistri, Roberto Ballarin, Stefano Di Sandro and Fabrizio Di Benedetto

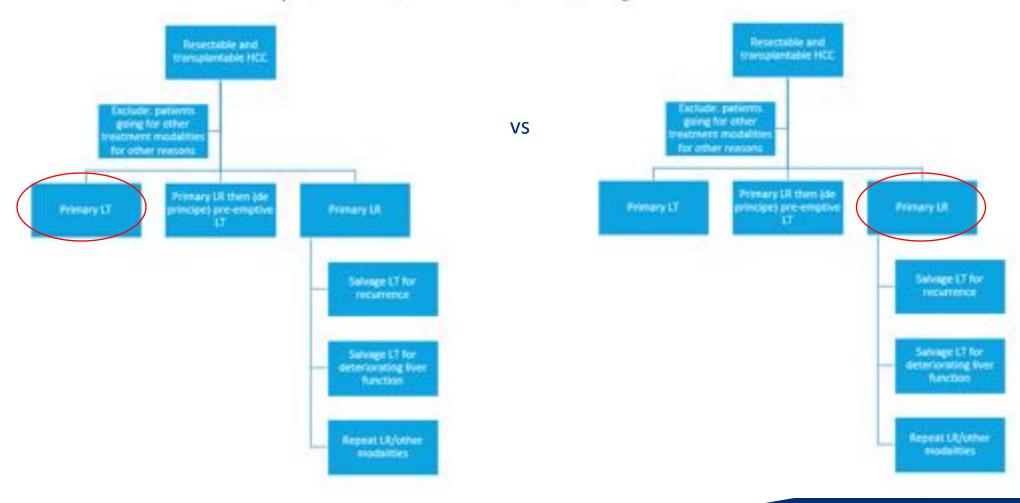
- 25 studies with 11275 patients

Table 1. Summary of studies included in the Meta-analysis.

n.	Author	Wanter	Year	Study Period	Study Design -	Sample Size		Follow-Up (mail:		IDITIONET	MINORS
		Region				SLT	FLT	SLT	PLT	- IDIT/DOCT	(Quality)
1	Adien [29]	France	2003	1984-2000	OCS (III)	17	195	49	51	DOLT	25
2	Belighett [30]	France:	2003	3993-2001	OCS (II)	18	70	56.2	56.2	DOLL	25
3	Margarit [10]	Spain	2005	7998-2002	OCS (P)	6	.36	NA	NA	NA.	20
4	Hwang [32]	Korea	200F	1997-2006	OCS (8)	5.7	200	30.7	40.1	LIDLY	22
5	Vennamoei [33]	Italy	2007	2003-2006	OCS (P)	9	37	26.3	26.3	NA.	20
6	Thet Gadin [34]	Italy	2009	3996-2005	CICS (III)	36	347	26.2	36	DOLL	23
7	Kim [35]	Kowa	2009	2005-2007	OCS (NA)	15	30	D6.5	167	DOLT + LDLT	20
8	Shao [36]	China	2006	2003-2005	OCS (P)	15	62	18	22.4	DOLL	22
9	Chengui [37]	France	2009	1990-2007	CICS (III)	28	136	57.6	576	DOLL	25
50	Sapisochin [38]	Spain.	2050	3990-2007	CRCS (P)	2.7	34	70	70	NA.	22
11	18a (3V)	China	2002	3999-2009	CICS (III)	200	6007	15.2	15	DOLT + LDLT	22 22
32	Kaldo [40]	Japan	2012	7999-2009	OCS (8)	19	48	77	77.	LDLT	22
23	Liu [41]	China	2052	2001-2011	OCS (8)	39	180	30	33	DOLT + LOUT	22
34	Moon [42]	Keren	2052	1996-2008	OCS (8)	17	169	27.3	39	LDLT	21
34 55	De Caelin [40]	Italy	2053	2000-2009	CICS (R)	26	155	NA	NA	NA.	22
56.	Guerrini [44]	Italy	2004	2000-2011	OCS (P)	28	198	44.2	44.2	DOLT + LDLT	22
17	Abe [43]	Japan	2005	2003-2011	XXXS (III)	15	45	66.3	73.2	LDLT	22
18	Bhangui [41]	France	2055	1990-2002	OCS (P)	35	740	62	62	DOLL	23
29.	Vasavada [47]	China	2005	2003-2012	CICS (90)	.18	93	NA	NA	LIDIT	22
20	Whang [48]	China	2006	2001-2011	OCS (P)	76	295	32.4	32.4	DOLT	25
20 21	Shan [41]	China	2007	2006-2005	CICS (III)	26	253	35	.35	DOLT + LOLT	25
22	Yong [50]	Talvean	2008	2000-2005	OCS (II)	100	300	NA	NA:	LDLT	22
23.	Chan [M]	Talwan	2009	2001-2018	CICS (III)	164	245	NA	NA	LIDET	22
24	Gas [52]	Singapoin	2059	2006-2007	OCS (P)	14	35	43.9	43.9	DOLY - LOUT	22
25	Hwan [53]	Koma	2020	2007-2019	OCS (R)	125	500	NA	NA.	LDLT	2.9

Salvage versus Primary Liver Transplantation for Hepatocellular Carcinoma: A Twenty-Year Experience Meta-Analysis

Gian Piero Guerrini *0, Giuseppe Esposito, Tiziana Olivieri, Paolo Magistri, Roberto Ballarin, Stefano Di Sandro and Fabrizio Di Benedetto


- 5y OS better in primary LT
 - SLT 53.9% and PLT 56.5%
 (OR 0.68, 95% CI 0.56 to 0.82 p < 0.0001)

	SLT		PLT			Odds Ratio	Odds Ratio
Study or Sungroup			Events	Total	Weight	M.H. Random, 95% CI	M.H. Random, 95% CI
Adam 2003	7	17	119	195	3.2%	0.45 (0.16, 1.22)	
Beighiti 2003	11	18	41	70	2.9%	1.11 (0.38, 3.21)	
Bhangui 2015	10	31	135	340	4.9%	0.72 (0.33, 1.58)	
Chan 2019	36	58	176	245	7.4%		
Chergui 2009	13	18	101	136	2.7%		
De Cartis 2013	21	26	115	153	3.0%	1.39(0.49, 3.93)	
Del Gaudio 2008	10	16	107	147	2.8%	0.62 (0.21, 1.83)	
Quemni 2014	14	28	129	198	4.8%		
Oue 2019	. 9	14	26	35	1.9%		
Hu 2012	407	688	2971	6087	24.2%		
Hwang 2001	0	17	144	200	3.2%	0.44(0.16, 1.19)	
Hwang 2020	94	125	396	500	10.7%	0.80 (0.50, 1.26)	
Kaldo 2012	15	19	36	48	2.1%	1.25 (0.35, 4.50)	- -
Llu 2012	24	39	130	180	5.6%		
Moon 2012	10	17	135	169	3.0%		
Sapisochin 2010	9	17	22	34	2.4%		
Shan 2017	12	28	125	211	4.9%		
Vasavada 2015	12	18	77	91	2.6%	0.36 (0.12, 1.13)	
Vennarecci 2007	. 8	9	22	37	0.7%	4.87 (0.55, 43.18)	
Yong 2018	79	100	319	348	7.2%	0.34 (0.19, 0.63)	
Total (95% CI)		1503		9424	100.0%	0.68 [0.56, 0.82]	•
Total events	810		5327			95 ° 6	
Hotorogene ty: Tau*		P= 24.		0 :P = I	0.17), P=	23%	to do to
Test for overall effect					. 100		0.01 0.1 1 10 100 Salvage LT Primary LT

Figure 18. 5-year overall survival rates.

Liver resection versus liver transplantation for hepatocellular carcinoma within Milan criteria: a meta-analysis of 18,421 patients

Jin Hean Koh¹⁸, Darren Jun Hao Tan¹⁸, Yuki Ong¹, Wen Hui Lim¹, Cheng Han Ng¹, Phoebe Wen Lin Tay¹, Jie Ning Yong¹, Mark D. Muthiah^{1,2,3}, Eunice X. Tan^{1,2,3}, Ning Qi Pang^{1,4}, Beom Kyung Kim^{1,6}, Nicholas Syn^{1,7}, Alfred Kow^{1,4}, Brian K. P. Goh^{8,9}, Daniel Q. Huang^{1,2,3,6}

Meta-analysis 2

Liver resection versus liver transplantation for hepatocellular carcinoma within Milan criteria: a meta-analysis of 18,421 patients

Jin Hean Koh¹⁸, Darren Jun Hao Tan¹⁸, Yuki Ong¹, Wen Hui Lim¹, Cheng Han Ng¹, Phoebe Wen Lin Tay¹, Jie Ning Yong¹, Mark D. Muthiah^{1,2,3}, Eunice X. Tan^{1,2,3}, Ning Qi Pang^{3,4}, Beom Kyung Kim^{5,6}, Nicholas Syn^{1,7}, Alfred Kow^{3,4}, Brian K. P. Goh^{8,9}, Daniel Q. Huang^{1,2,3,6}

- Within Milan criteria
- Population includes resectable and non resectable HCC patients
 - Proportion of cirrhosis patient differed between groups
- Results generally favoured LT

LR showed poorer OS HR = 1.44; 95% CI: 1.14–1.81;
 P<0.01] and DFS (HR =2.71; 95% CI: 2.23–3.28; P<0.01) compared to LT

 Similar to previous the metaanalysis shown, but different groups compared!

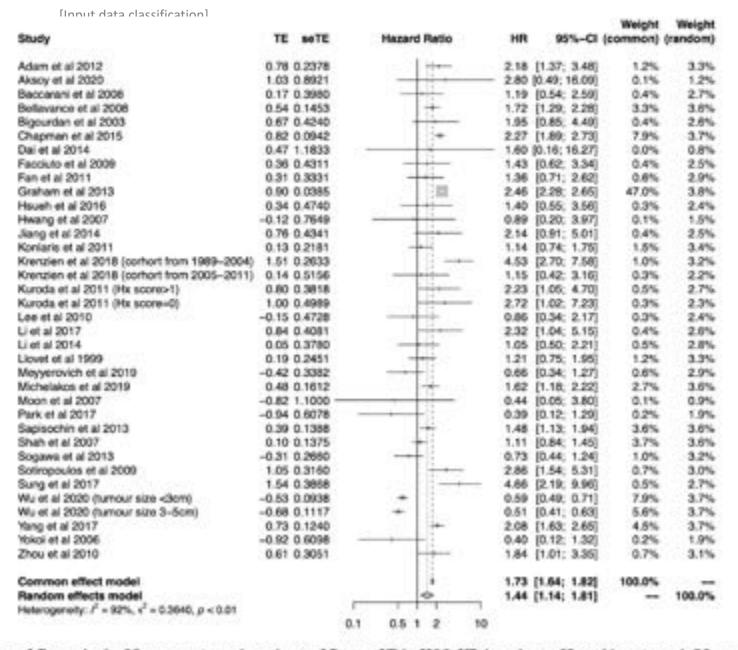


Figure 2 Forest plot for OS among patients who underwent LR versus LT for HCC. HR, hazard ratio; CI, confidence interval; OS, overall survival; LR, liver resection; LT, liver transplantation; HCC, hepstocellular carcinoma.

Table 1 Patient demographics and tumour characteristics, by treatment

Characteristics	Number of studies (total sample size)	LT (95% CI)	Number of studies (total sample size)	LR (95% CI)	P	
Male (%)	23 (2,344)	81.13 (76.83-84.79)	23 (3,656)	75.30 (69.43-80.36)	0.086	
Age (years)	23 (2,386)	53.74 (51.59-55.90)	24 (3,676)	57.05 (54.47-59.63)	0.054	
Cirrhosis (%)	21 (2,047)	95.51 (94.52-96.32)	22 (3,145)	87.19 (85.97-88.31)	<0.001	
HBV (%)	20 (2,125)	39.45 (16.42-68.37)	21 (3,296)	47,67 (27.57-68.56)	0.658	
HCV (%)	17 (1,991)	33.56 (18.37-53.15)	18 (2,993)	19.79 (11.10-32.76)	0.184	
ALD (%)	12 (1,279)	13.52 (6.21-26.95)	12 (435)	14.83 (7.83-26.28)	0.851	
NASH (%)	7 (808)	5.60 (3.13-9.80)	7 (1,024)	9.22 (5.59-14.85)	0.193	
Microvascular invasion (%)	19 (1,864)	15.23 (9.04-24.53)	20 (2,960)	19.83 (12.63-29.75)	0.434	
Poorly differentiated (%)	12 (1,005)	11.77 (8.39–16.26)	12 (2,107)	14.84 (8.90-23.71)	0.447	
fumour size (cm)	17 (1,256)	2.74 (2.40-3.08)	17 (1,658)	3.24 (2.79-3.68)	0.084	
Uninodular HCC (%)	17 (2,029)	89.67 (88.25-90.94)	17 (3,073)	91.15 (90.09-92.11)	0.08	
LDLT (%)	16 (1,336)	78.07 (75.88-80.11)		-	2	
Asian centres	12 (923)	96.97 (92.38-99.97)	-	-	20	
Non-Asian centres	4 (413)	46.06 (41.91-50.26)	-	-	20	
DDLT (%)	11 (746)	19.89 (17.93-22.01)	-	€.	-	
Asian centres	5 (201)	3.03 (2.10-4.36)	-	2	-	
Non-Asian centres	6 (545)	48.44 (44.27-52.64)	7.2	©	-	

LT, liver transplantation; LR, liver resection; Cl, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; ALD, alcoholic liver disease; NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma; LDLT, living donor liver transplantation; DDLT, deceased donor liver transplantation.

Issues with the evidence comparing LR to LT

Across various studies:

- Patient selection different
 - Different LT criteria (Milan, UCSF etc)
 - Cirrhotic vs non-cirrhotic

- LT after recurrence (salvage LT)
- Pre-emptive LT after initial resection
- Pre-emptive LT after initial resection when liver function deteriorates
- Were secondary LT patients upfront transplantable?

Transplantable

HCC

Resectable

HCC

Resectable

HCC

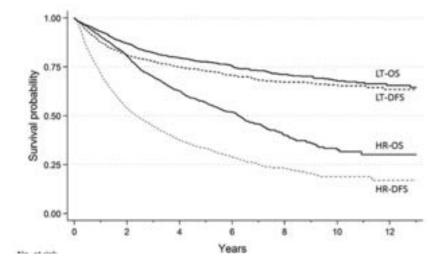
V

S

VS

Despite the difficulties

Evidence so far...


Generally, most authors seem to conclude that

- Primary LT seems to improve survival (OS vs DFS) compared to strategies involving LR
- But given practical considerations specific to LT, secondary LT after LR is an accepted treatment strategy

Liver Transplantation and Hepatic Resection can Achieve Cure for Hepatocellular Carcinoma

Antonio Daniele Pinna, MD, * Tian Yang, MD, † Vincenzo Mazzaferro, MD, PhD, ‡
Luciano De Carlis, MD, FEBS, § Jian Zhou, MD, PhD, ¶ Sasan Roayaie, MD, || Feng Shen, MD, PhD, †
Carlo Sposito, MD, PhD, † Matteo Cescon, MD, PhD, * Stefano Di Sandro, MD, PhD, § He Yi-feng, MD, ¶
Philip Johnson, MD, FRCP, ** and Alessandro Cucchetti, MD*

- LT (n = 1218) vs LR (n = 2068)
- Estimated statistical cure
- Cure fraction of LT outperformed LR across all transplant criteria, esp for multiple tumours, even after accounting for drop out up to 20%

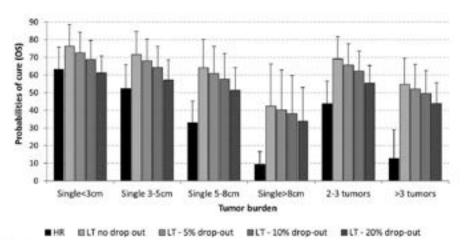


FIGURE 2. Graphical representation of cure fraction estimated on overall survival (OS), when cure was defined solely as the chance of being alive, regardless of tumor recurrence, equal to that of the general population, in fact, it can be argued that in presence of increased efficacy of therapeutic strategies for HCC recurrence, principally after hepatic resection, patients can still experience long-term survivals. Therefore, cure was estimated considering HCC as a chronic illness requiring continuing therapeutic options.

Risk factors for early mortality after hepatectomy for hepatocellular carcinoma

Chao-Wei Lee, MD^{a,b,c}, Hsin-I Tsai, MD^{c,d}, Chang-Mu Sung, MD^{a,e}, Chun-Wei Chen, MD^e, Shu-Wei Huang, MD^e, Wen-Juei Jeng, MD, PhD^e, Tsung-Han Wu, MD^a, Kun-Ming Chan, MD^{a,b}, Ming-Chin Yu, MD^{a,b,c,*}, Wei-Chen Lee, MD^{a,b}, Miin-Fu Chen, MD^{a,b}

A review of 3383 patients

Variables	Score allocation	Total score	No. (% of total)	6-mo mortality (%)	Total score	No. (% of total)	6-mo mortality (%
Diabetes mellitus	1	0	36 (1.8)	1 (2.8)	6	203 (10.5)	27 (13.3)
Albumin ≤3.5g/dL	2	1	36 (1.8)	2 (5.6)	7	112 (5.7)	21 (18.75)
α-fetoprotein >200 ng/mL	2	2	532 (27.5)	11 (2.1)	8	76 (3.9)	12 (15.8)
Major resection*	1	3	308 (15.9)	10 (3.2)	9	39 (2.0)	9 (25.6)
Blood loss >800 mL	1	4	288 (14.9)	20 (6.9)	10	6 (0.3)	2 (33.3)
Major surgical complications ¹	3	5	299 (15.5)	30 (10)	Total	1935 (100)	145 (7,5)
RAM score ⁵		Score				6-mo mortality (%	10
Class I		0-6		101 (5.9)		P< 0.001
Class II		7-9		42 (18.5)		
Class III		10			33.3)		

[&]quot;The regression coefficients (B) were multiplied by 2 and rounded to integer in order to calculate the RAM score...

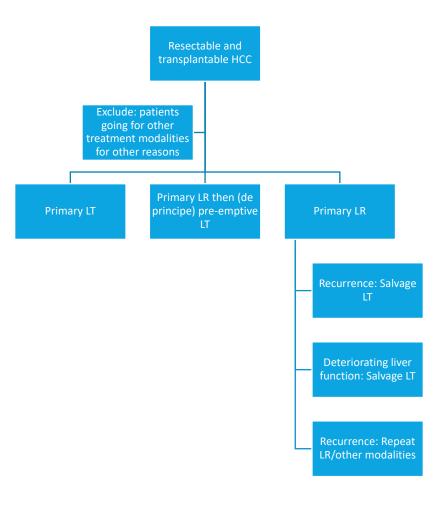
Lee et al 2016, Medicine (Baltimore)

Includes trisegmentectomy, right/left lobectomy, and extended right/left lobectomy.

¹ Major surgical complications include grade III-IV surgical complications.

¹ AUC = 0.725, P < 0.001. When cutoff score is 4.5, the sensitivity and specificity for 6-month mortality was 0.705 and 0.648, respectively.

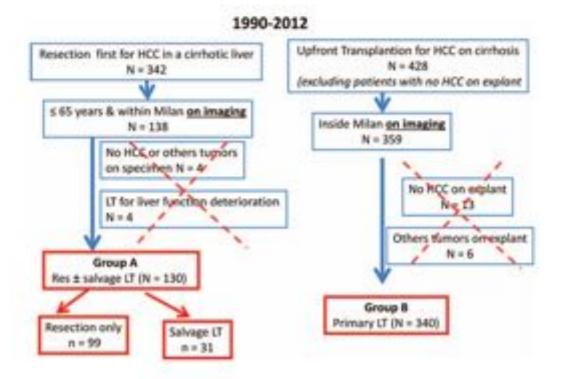
Poor Prognostic Factors for Resection


- Portal HTN
- Multifocal HCC
- Impaired liver function

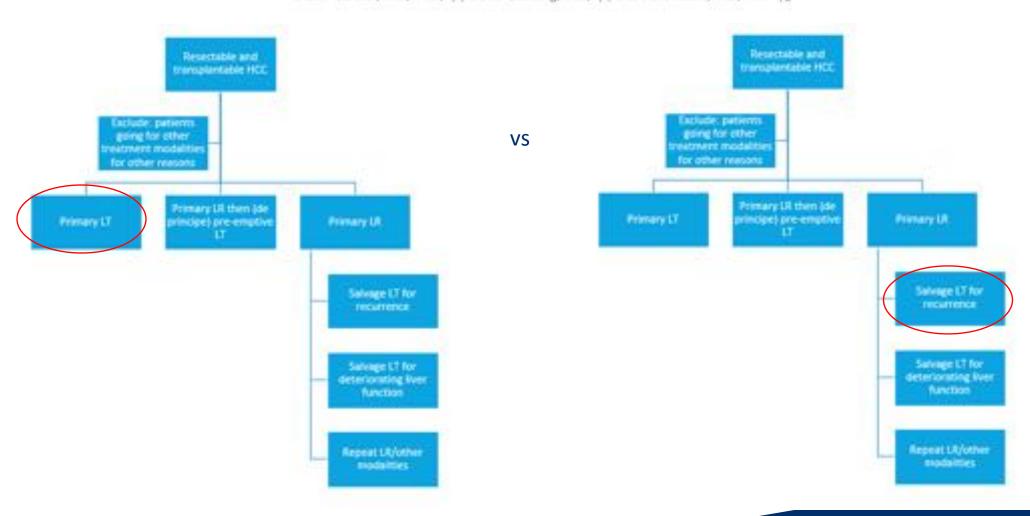
Why consider LR then?

- Practical considerations for LT
 - Availability of organ
 - Different considerations between DDLT vs LDLT?
 - Costs of LT
 - Long term immunosuppressants
 - Specialized multidisciplinary team
- LR can serve as
 - Bridging therapy to LT to prevent waitlist drop out (pre-emptive)
 - Definitive curative treatment (until recurrence: then salvage LT)

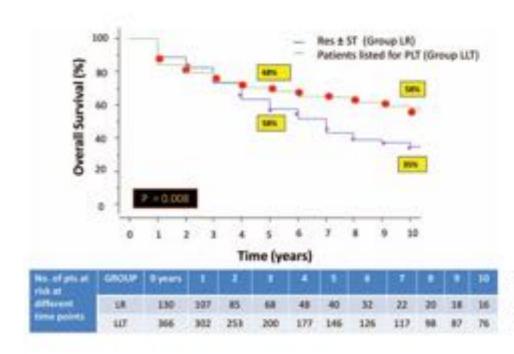
Resectable and Transplantable


How to choose?

Salvage Versus Primary Liver Transplantation for Early Hepatocellular Carcinoma: Do Both Strategies Yield Similar Outcomes?


Prashant Bhangui, MD, *† Marc Antoine Allard, MD, *† Eric Vibert, MD, PhD, *† Daniel Cherqui, MD, *† Gilles Pelletier, MD, *† Antonio Sa Cunha, MD, *† Catherine Guettier, MD, *† Jean-Charles Duclos Vallee, MD, *† Faouzi Saliba, MD, *† Henri Bismuth, MD, *Didier Samuel, MD, PhD, *† Denis Castaing, MD, *† and René Adam, MD, PhD *†

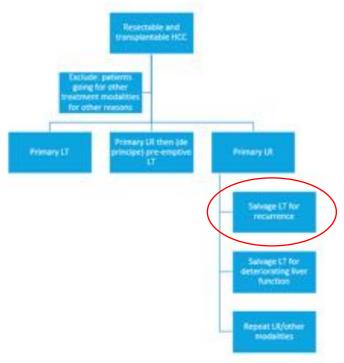
- Note: patient population for LT upfront may not have been upfront resectable
- Only looked at cirrhotic patients



Salvage Versus Primary Liver Transplantation for Early Hepatocellular Carcinoma: Do Both Strategies Yield Similar Outcomes?

Prashant Bhangui, MD, *†‡ Marc Antoine Allard, MD, *†§ Eric Vibert, MD, PhD, *†¶ Daniel Cherqui, MD, *†¶
Gilles Pelletier, MD, *†¶ Antonio Sa Cunha, MD, *†§ Catherine Guettier, MD, *†¶
Jean-Charles Duclos Vallee, MD, *†¶ Faouzi Saliba, MD, *†¶ Henri Bismuth, MD, *
Didier Samuel, MD, PhD, *†¶ Denis Castaing, MD, *†¶ and René Adam, MD, PhD*†§

		Confi Inte		
	HR	Lower	Upper	P
Overall survival				
Resection ± SLT strategy	1.882	1.175	3.015	0.002
Microvascular tamor invasion	1.682	1.218	2.324	0.0003
Disease-free survival				
Resection ± SLT strategy	37.95	6.51	16.68	< 0.0000
Microvascular tumor invasion	7.02	3.74	8.63	0.001
Satellite tumor nodules	9.34	3.48	7.94	0.04



 Upfront resection and microvascular tumor invasion were poor prognostic factors for both OS and DFS, presence of satellite tumor nodules additionally predicted worse DFS.

FIGURE 2. Overall survival resection ± salvage LT [group LR] (n = 130) versus patients listed for PLT (including drop-outs) [group LLT] (n = 366). Res, resection.

ITT analysis: LT better 5-yr/10-yr OS compared with LR (68%/58% vs. 58%/35%; p = 0.008)

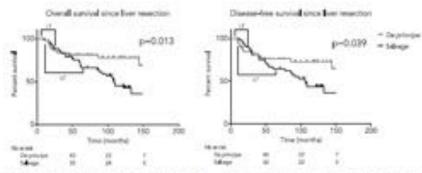
- For patients who managed to undergo salvage LT, post-op and long term outcomes seem similar to primary LT
- However, the feasibility of salvage LT was 34% (31/90)
 - Tumours progressing beyond Milan, cannot be listed
 - Patient age above cut-off for LT
 - Progression while on waiting list

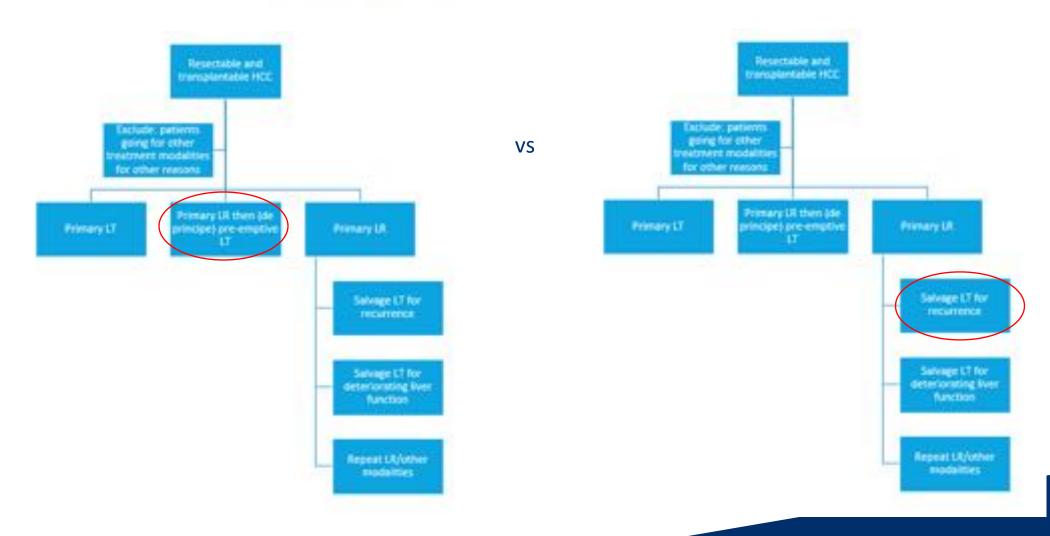
[Input data classification]

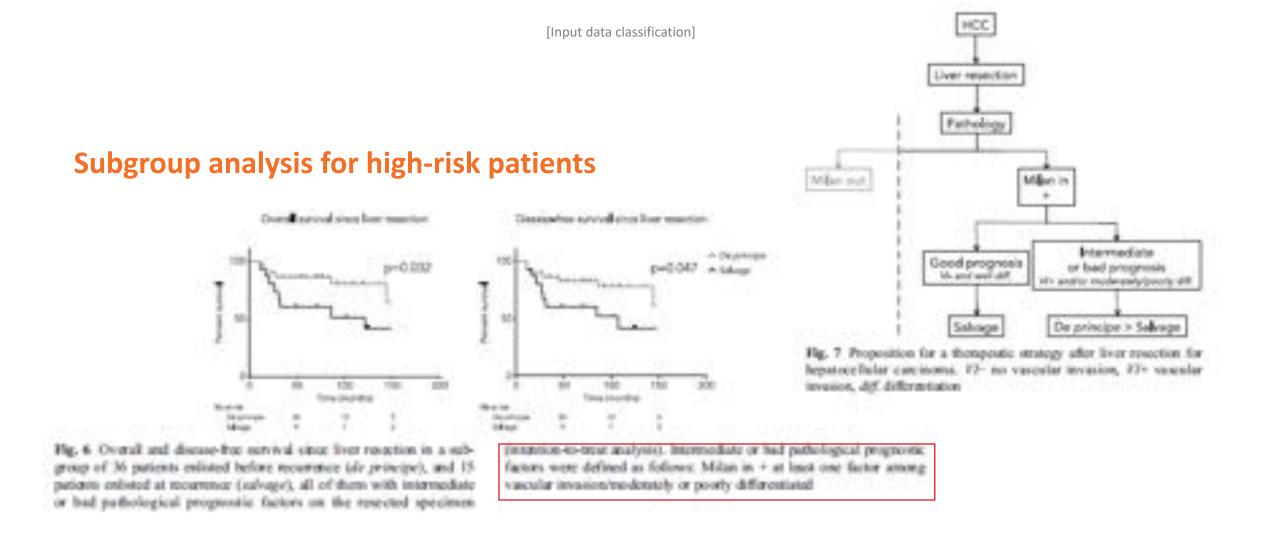
When Should We Propose Liver Transplant After Resection of Hepatocellular Carcinoma? A Comparison of Salvage and *De Principe* Strategies

Ecoline Tribillon¹ · Louise Barbier¹ · Claire Goumard² · Sabine Irtan¹ · Fabiano Perdigao-Cotta² · François Durand³ · Valérie Paradis⁴ · Jacques Belghiti¹ · Olivier Scatton² · Olivier Soubrane¹

- De principe (n = 63) vs salvage LT (n = 48)
- 5y OS higher in de principe group
 84.6 versus 74.8 %, p=0.017



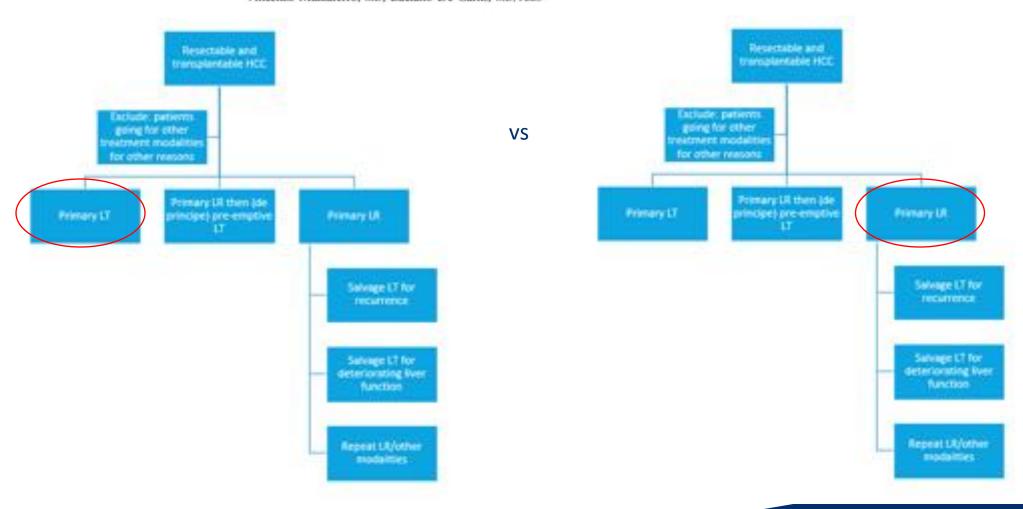

Fig. 2 Overall and disease-free survivals since liver resection in 63 patients enlisted before recurrence (de principe), and 48 patients enlisted at recurrence (xalvage), following liver resection for


hquatocellular carcinoma (intention-to-treat analysis). The mean times standard deviation between liver resection and liver transplantation is figured for each group

Tribillon et al 2016, J Gastrointest Surg

When Should We Propose Liver Transplant After Resection of Hepatocellular Carcinoma? A Comparison of Salvage and *De Principe* Strategies

Ecoline Tribillon¹ · Louise Barbier¹ · Claire Goumard² · Sabine Irtan¹ · Fabiano Perdigao-Cotta² · François Durand³ · Valérie Paradis⁴ · Jacques Belghiti¹ · Olivier Scatton² · Olivier Soubrane¹



In the good pathological prognostic factors sub-group (n=22), the 5-year overall and disease-free survivals were not different between de principe and salvage groups (p=0.305 and p=0.292, respectively).

Proposal of Prognostic Survival Models before and after Liver Resection for Hepatocellular Carcinoma in Potentially Transplantable Patients

Stefano Di Sandro, MD, PhD, Carlo Sposito, MD, Andrea Lauterio, MD, FEBS, Marc Najjar, MD, Michele Droz dit Busset, MD, Vincenzo Buscemi, MD, Maria Flores Reyes, MD, Riccardo De Carlis, MD, Vincenzo Mazzaferro, MD, Luciano De Carlis, MD, FEBS

Proposal of Prognostic Survival Models before and after Liver Resection for Hepatocellular Carcinoma in Potentially Transplantable Patients

Stefano Di Sandro, MD, PhD, Carlo Sposito, MD, Andrea Lauterio, MD, FEBS, Marc Najjar, MD, Michele Droz dit Busset, MD, Vincenzo Buscemi, MD, Maria Flores Reyes, MD, Riccardo De Carlis, MD, Vincenzo Mazzaferro, MD, Luciano De Carlis, MD, FEBS

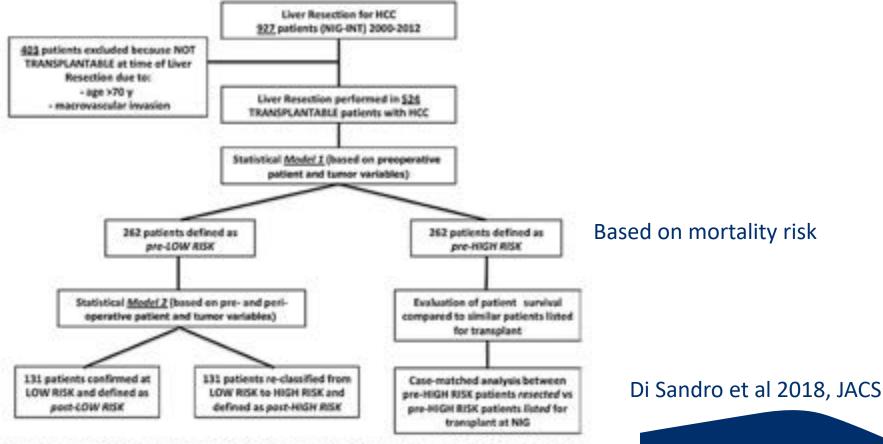
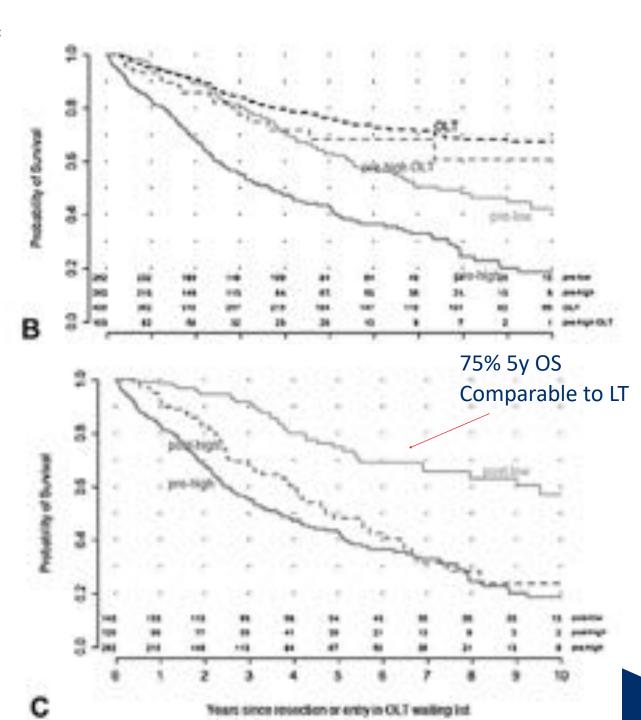



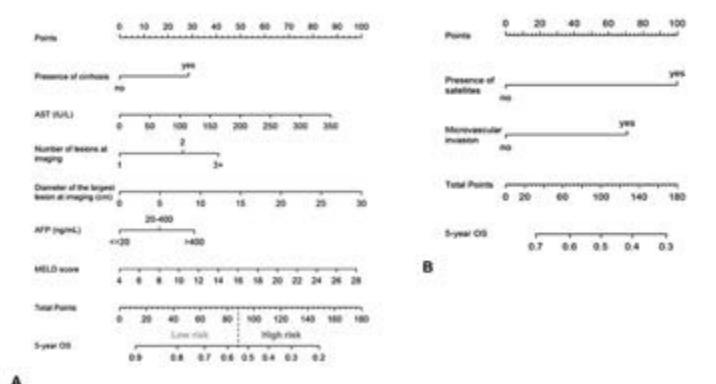
Figure 1. Study design and study cohort. HCC, hepatocellular carcinoma; INT, listituto Nazionale Tumori; NIG, Niguarda Ca' Granda Hospital.

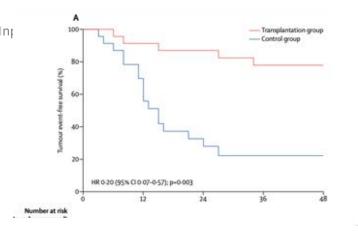
Table 4. Models 1 and 2 Parameter Estimates for the Multivariable Regression Model for Overall Survival According to Preoperative Factors

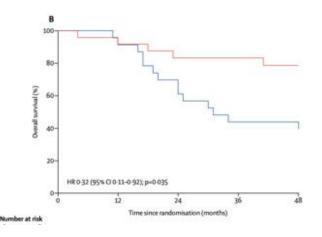
Concordance index	95% CI	Estimate	66	or Market
		Continue to	SE	p Value
0.67	0.63-0.71			
	_	0.55	0.25	0.03
	-	0.005	0.001	0.001
	_	0 (reference)	reference	reference
	_	0.32	0.18	0.08
_	_	0.60	0.21	0.006
-	_	0.08	0.03	0.003
	_	0 (reference)	reference	reference
=	-	0.51	0.18	0.008
-	-	0.79	0.28	0.004
		0.06	0.02	0.001
0.65	0.60-0.71	15,000	20000	1.00000
-	_	0.70	0.17	< 0.0001
	_	0.49	0.17	0.003
			0.55 - 0.005 - 0.005 - 0.005 - 0.60 - 0.60 - 0.08 - 0.08 - 0.09 - 0.79 - 0.06 0.65 0.60-0.71 - 0.70	0.55 0.25 - 0.005 0.001 - 0.005 0.001 - 0.005 0.001 - 0.006 0.32 0.18 - 0.00 0.21 - 0.008 0.03 - 0.008 0.03 - 0.01 0.18 - 0.79 0.28 - 0.05 0.00 0.05 0.00 0.05 0.00

- 5y OS pre-high risk LR vs LT: 43% vs 68%;
 p<0.001
- 5y OS (pre-low but) post-high risk LR vs pre-low LT: 48% vs 76%
- 5y OS (pre-low with) post-low risk LR vs pre-low LT: 75% vs 76%
- Conclusion: Survival with LR is only comparable with LT for post-low risk patients
 - Otherwise, LT confers greater survival benefit

- To determine pre-low/high risk, look at A
- To look at post resection low/high risk, look at B




Figure 3. (A) Overall survival nomogram to predict the risk class of resected hepatocellular carcinoma (HCC) patients according to preoperative risk factors. (B) Overall survival nomogram to reclassify according to postoperative risk factors the risk of HCC patients initially classified at low risk according to preoperative risk factors (pre-low group). To use the nomogram, locate the value of each prognostic risk factor and draw a vertical line up to the points axis to obtain the relative score. Add together the score for all the prognostic factors and locate the total score on the total points axis and its associated risk class. AFP, or fetoprotein; AST, aspartate aminotransferase; MELD, Model for End-Stage Liver Disease; OS, overall survival.


Additional Dimensions – not just LR vs LT

- Practical considerations for LT
 - Availability of organ
 - Different considerations between DDLT vs LDLT?
 - Costs of LT
 - Long term immunosuppressants
 - Specialized multidisciplinary team
- Disease factors
 - Presence of cirrhosis
 - Number of nodules, diameter of largest nodule
 - AFP
 - MELD
 - Satellite nodules, microvascular invasion
 - Patients beyond transplant criteria, role of locoregional downstaging + LT vs LR
 - LR as a downstaging strategy?
- Other treatment modalities

Liver transplantation in hepatocellular carcinoma after tumour downstaging (XXL): a randomised, controlled, phase 2b/3 trial

Vincenzo Mazzaferro, Davide Citterio, Sherrie Bhoori, Marco Bongini, Rosalba Miceli, Luciano De Carlis, Michele Colledan, Mauro Salizzoni, Renato Romagnoli, Barbara Antonelli, Marco Vivarelli, Giuseppe Tisone, Massimo Rossi, Salvatore Gruttadauria, Stefano Di Sandro, Riccardo De Carlis, Maria Grazia Lucà, Massimo De Giorgio, Stefano Mirabella, Luca Belli, Stefano Fogiuali, Silvia Martini, Massimo lavarone, Gianluca Svegliati Baroni, Mario Angelico, Stefano Ginanni Corradini, Riccardo Volpes, Luigi Mariani, Enrico Regalia, Maria Flores, Michele Droz dit Busset, Carlo Sposito

- Child's A-B7
- Tumour downstage with locoregional, surgical or systemic therapies
- 3 month sorafenib observation period
- Patients with partial or complete responses according to mRECIST randomly assigned
- Control group: sequences of locoregional and systemic treatment at time of demonstrated tumour progression
- Intervention: LT
- LR only accounts for 9% (LT) and 5%(control) but shows LR as a potential downstaging strategy

IMbrave 050: a Phase III trial of atezolizumab plus bevacizumab in high-risk hepatocellular carcinoma after curative resection or ablation

Stephen P Hack (), Jessica Spahn, Minshan Chen, Ann-Lii Cheng, Ahmed Kaseb, Masatoshi Kudo, Han Chu Lee, Adam Yopp, Pierce Chow & Shukui Qin

- Future considerations
 - Precision medicine
 - Immunotherapy

Review Article | Published: 30 July 2018

Molecular therapies and precision medicine for hepatocellular carcinoma

Josep M, Llovet , Robert Montal, Daniela Sia & Richard S. Finn

Nature Reviews Clinical Oncology 15, 599-616 (2018) Cite this article

Conclusions

- Most patients with resectable HCC will have a survival benefit from upfront LT
- Unfortunately LT candidates outnumber potential donors
- Careful analysis of each case should be done
 - Patients at low risk of HCC recurrence should be considered for LR
 - LT = LR
 - Patients at higher risk of HCC recurrence should be considered for upfront LT, or preemptive salvage LT, or salvage LT after recurrence
 - Upfront LT > pre-emptive salvage LT > salvage LT after recurrence
- Arrival of effective adjuvant treatment may completely change this paradigm

Thank you.

